3k^2+6k-4=0

Simple and best practice solution for 3k^2+6k-4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2+6k-4=0 equation:


Simplifying
3k2 + 6k + -4 = 0

Reorder the terms:
-4 + 6k + 3k2 = 0

Solving
-4 + 6k + 3k2 = 0

Solving for variable 'k'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1.333333333 + 2k + k2 = 0

Move the constant term to the right:

Add '1.333333333' to each side of the equation.
-1.333333333 + 2k + 1.333333333 + k2 = 0 + 1.333333333

Reorder the terms:
-1.333333333 + 1.333333333 + 2k + k2 = 0 + 1.333333333

Combine like terms: -1.333333333 + 1.333333333 = 0.000000000
0.000000000 + 2k + k2 = 0 + 1.333333333
2k + k2 = 0 + 1.333333333

Combine like terms: 0 + 1.333333333 = 1.333333333
2k + k2 = 1.333333333

The k term is 2k.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2k + 1 + k2 = 1.333333333 + 1

Reorder the terms:
1 + 2k + k2 = 1.333333333 + 1

Combine like terms: 1.333333333 + 1 = 2.333333333
1 + 2k + k2 = 2.333333333

Factor a perfect square on the left side:
(k + 1)(k + 1) = 2.333333333

Calculate the square root of the right side: 1.527525232

Break this problem into two subproblems by setting 
(k + 1) equal to 1.527525232 and -1.527525232.

Subproblem 1

k + 1 = 1.527525232 Simplifying k + 1 = 1.527525232 Reorder the terms: 1 + k = 1.527525232 Solving 1 + k = 1.527525232 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + k = 1.527525232 + -1 Combine like terms: 1 + -1 = 0 0 + k = 1.527525232 + -1 k = 1.527525232 + -1 Combine like terms: 1.527525232 + -1 = 0.527525232 k = 0.527525232 Simplifying k = 0.527525232

Subproblem 2

k + 1 = -1.527525232 Simplifying k + 1 = -1.527525232 Reorder the terms: 1 + k = -1.527525232 Solving 1 + k = -1.527525232 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + k = -1.527525232 + -1 Combine like terms: 1 + -1 = 0 0 + k = -1.527525232 + -1 k = -1.527525232 + -1 Combine like terms: -1.527525232 + -1 = -2.527525232 k = -2.527525232 Simplifying k = -2.527525232

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.527525232, -2.527525232}

See similar equations:

| 0.66=x-1.66 | | 3.4x=10.2 | | 2x^2y/8xy^3 | | 3x+2x=x+x+20 | | -8l+24=-16 | | 6/5-3/10 | | 4.9v=1.1613 | | 2/3=x-12/3 | | 2(5+4y)+3(2+3y)= | | x+(x+6)=176 | | 3(2w+9-5w)= | | 0.1m=0.44 | | -2(4y-10)= | | y=10x^2-10x-60 | | 3.7x=7.03 | | 3n-24=27 | | -8(g+3)= | | 8(3-b)=8 | | 4cos^2(x)+5=6 | | 7n^2+17n-1830=0 | | -1.8=-5.58 | | 3x+6=25x | | X-4.1=7.8 | | 7d+7=3d+23 | | 7x^2+7xy+7y^2+11y-7=0 | | 2(3d-4)=4(5-6d) | | 5x^2=34+(8x+38) | | Y=log(8)(5-x)+4x^2 | | y/3=x/2 | | 1x+9+6=5x+5 | | 5(7b-2)= | | 1.8r=5.58 |

Equations solver categories